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A nons ta t ionary  m i x e d  problem of  heat conduct ion  that mode l s  the process  o f  f r ic t ional  heat ing in sliding 

o f  rough sur faces  is solved. 

It is known that the interaction of rough surfaces within a minimal contact area can bring about highly 

localized rapid temperature bursts. Determination of the surface temperature of friction pairs experimentally is 

difficult, due to a number of factors [ 1, 2 ]. Therefore, such investigations have been carried out theoretically [3-5 ] 

assuming that the actual area of contact coincided with its nominal value. This made it possible to use the theory 

of a fast-moving source [6 ]. However, if the projections of microirregularities are sufficiently widely spaced (the 

distance between adjacent  projections exceeds by an order of magnitude the size of an individual surface 

irregularity), then we can carry out an analysis for each irregularity separately assuming their mutual effect to be 

of no importance. 
Let us consider an elastic half-space whose surface z = 0 is rough. The region near the apex of an individual 

microprojection is modeled by an element of a spherical segment of radius R. We assume that due to contact with 

the other half-space, an individual apex experiences normal and shear forces, P and f P ,  respectively. The bodies 

are in sliding contact: the surface of the half-space slides with a constant velocity Vover a fixed spherical irregularity 

in the direction of a certain axis x. Friction on the contact area generates heat that forms a heat flux directed 

towards the inside of the fixed body: 

Q (r) = r f V p  (r) , r = ~ ,  r < R . 

Here p(r) is the contact pressure in a corresponding isothermal problem [7 ]: 

p ( r ) = P o f f - - i - : - ~  ' p = r / R , 

On the remaining portion of the body we take into account convective heat transfer. 
Thus, to investigate the thermal regime of a microprojection, we must solve the heat conduction equation: 

subject to the initial 

and mixed boundary conditions 

2 OpT + OzzT = OFoT; (1) opp T + p - 1 "~ 

T 60, Z, 0) = 0 (2) 

O z T = J - A ~ - : - ~ ,  Z = 0 ,  p < l ,  (3) 
[ ~ B i T  Z = 0 ,  p >  1, 
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T ~ 0 when ~/p2 + Z 2 .., = ,  (4) 

where A - y f V P o R / 2  t. 

An analytical solution of problem (1)-(4) at Bi = 0 was obtained in [51. 

For values of Bi that differ from zero, we construct a solution of the initial boundary-value problem of heat 

conduc t ion  (1)- (4)  by apply ing  the C h e b y s h e v - L a g u e r r e  integral  t r ans format ion  [8]  with respect to the 
dimensionless parameter  Fo: 

T n ( p , z )  =7 e-'~v~ L n(2Fo) dFo,  n = 0 ,  1,2 . . . . .  
0 

O) 

T 60, Z, Fo) = ~ ~ T~ 6o, Z) L~ (;tFo) 
r t=O 

(6) 

and the Hankel integral transform with respect to the radial variable. 

In Eqs. (5) and (6) 2 is a parameter playing the part of a scale factor and serving to economize series (7) 

over different ranges of the variable Fo (selected from the condition that 0.1 < ,l.Fo < 5). 

As a result, the heat conduction equation (1) is reduced to a sequence of ordinary differential equations of 
the form: 

n - I  
2 - -  d=r , ,  - 0 + ~2) ~ .  = ~ y .  ~ , . ,  ,l = o, l, 2 . . . . .  (7) 

m = O  

where Tn(~, Z) = pTn(p, Z)do(~p)dp is the Hankel transform. 
0 

We represent a general solution of the sequence of differential equations (7) as 

rt 

"Tn (~, Z) = ~ [An_ j (~) G] (~, Z) + Bn_ i (~) W] (~, Z) I ,  
./=0 

(8) 

where A,t-/(~) and Bn_j(~) are functions to be determined from boundary  conditions (3) and (4), whereas G](~, Z) 
and W](~, Z) are linearly independent  fundamental  systems of the solution of sequence (7). Since Wj{~, Z) --, co 

when Z --) oo, then condition (4) immediately yields Bk(~) --- 0, k = 0, 1, 2 . . . . .  Using the method of undetermined 

coefficients, we represent the functions G](~, Z) as 

cj z> = exp ( -  z Z '  (9) 

Substituting Eq. (9) into sequence (7), we obtain recurrent relations for determining the unknowns aj, t (~) : 

aj,p+ 1 = 0.5 (~2 + 2 ) - 1 / 2  (p + 1)-t  (p + I) (p + 2) ay,v+ 2 + 2 ~ ak, p , 
k=p 

(lO) 
j =  1 , 2 , 3  . . . .  ; k = 0 ,  1 . . . . .  j -  1. 

We note that in relations (10) aj.k(~) = O, when k > i, and ay, 0(~) are arbitrary functions. Suppose ay. o(~) = 6jo; 
then it follows from Eq. (9) that Gj{~, 0) = 6,o too. 

Having satisfied boundary  condition (3), transformed according to formula (5), we arrive at a sequence of 
paired integral equations of the form 
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Fig. 1. Distribution of the dimensionless temperature 7"* on the half-space 
surface (Z=O) at Bi =0 .1 :  1) Fo = 0.1, 2) 1.1, 3) 6.4, 4) Fo--  oo. 

7 ~ ~ An-./(~) G) (~) Jo (P~) d~ = - + ~I 1 - p2 60n' 
0 j=o 

(11) 

p <  1,  n = 0 , 1 , 2  . . . .  ; 

7 ~ I~ Zn-J(~)G)(~)- Bimn(~)) =0 

(12) 

p >  1, n = 0 , 1 , 2  . . . . .  

where Gi(~ ) = OzG.l'(~, Z) lzeO. 
Since G'O(~) = - x / ~ 2  + 2,  we write the solution of sequence (11), (12) using a Ncumann series as 

1 [~ ~a~J2k+l(~)+~An_j(~)Gj(~)] " (13) 
An (~) = V~-~ 2 + a + Bi k=0 j=0 

On the basis of the well-known [9 ] properties of the Weber-Schafhe i t l in  discontinuous integral Eq. (12) 

is satisfied identically, and Eq. (11), after some transformations [10], yields a sequence of infinite systems of 

linear algebraic equations 

a m + a bkm = cm, m = 0, 1, 2 . . . .  ; n = O, 1, 2, . . . ,  
k=O 

where 

bkm = 2(2k  + I ) I /2  (2m + 1) 1/2 7 J2k+| (~) J2m+l (~) d~j; 
o ~(v~+a+Bi) 

n I = '  c m= 2 ( 2 m  + 1) 1/2 A 6 o n f ~ - 3  2 j 3 / 2 ( r  (~)dr  + 
0 

i=l  o r  + Bi 
= (2m + l ) - l / 2 a ~ .  
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Fig. 2. Dependence of the d imensionless  tempera ture  7"* at the center  of the 

heat ing spot (Z = 0; p = 0) on the dimensionless  numbers  Fo (I)  Bi = 0, 2) 

0.1, 3) I) (a) and Bi (1) Fo = 0.1, 2) 1.2, 3) 10.1, 4) Fo = o~) (b). 

We can show that 

Cbkr ) 2 < 2 < = O, l ,  2 . . . . .  
k,m=O m=O 

and,  accoromg to [11 ], a solution of sys tems (14) that satisfies the condit ion 

(a < o o ,  n = 0 , 1 , 2  . . . . .  
k=0 

exists  and  can be found by,  say,  the method of reduction.  

Having de te rmined  a~ from the sequence of a lgebraic  equations (14) and,  cor respondingly ,  An( t )  from 

relat ion (13), we find a solution of the initial bounda ry  value problem (1)-(4) in the form 

r o,Z, f (15) 
n=O j=O 0 

Numer ica l  Analys is .  The  dependence  of the dimensionless  tempera ture  7"* = A - 1 T  on the radia l  variable 

for four different  values of the Four ier  number  at Z = 0, Bi = 0.1 is presented  in Fig. 1. We judge  the a t ta inment  

of a s teady  state near  the source by an insignificant change in tempera ture  when the time variable  is increased by 

an order  of magni tude.  At points closer to the heat  source, the t ransi t ion process is shorter .  For example ,  at Fo = 

1.1 the tempera ture  at the center  accounts for 43.5% of the s ta t ionary  value, while at point p = 2.0, for only 7~'o. 

A sharp tempera ture  gradient  is es tabl ished near  the heat  source (for example,  at  values of Fo of the order  of 

uni ty) ,  while in the region with p > 2, the tempera ture  is preserved almost  at a zero level. 

Trans i t ion  processes of the change of tempera ture  at the center  of the region of heat ing for Bi = 0, 0.1, 1 

are  presented  in Fig. 2a. For analysis  of the orders  of magni tude,  we assume that a s t eady  s ta te  near  the source 

corresponds  to Fo --- 10. For  the majori ty of metals k = 10 -5  m2/sec,  so that at R = 1 and l O 0 ~ m  the character is t ic  

times of the t ransi t ion process are 0.01 and 100 msec, respectively. 

Figure 2b presents  the nonsta t ionary  tempera ture  of the center  of the heat ing spot versus Bi for four 

different  values of Fo. The  maximum value of the d imensionless  tempera ture  'ffmax = :rt/4 = 0.78 is a t ta ined  for 

Fo ~ oo and Bi ~ 0, so that  Tmax = A.rt/4 = ( T f V P o R / 2 t ) ( : t / 4 ) .  Thus,  with an increase  in the source radius  under  

fixed frictional condi t ions on the contact,  the maximum tempera ture  increases.  Since the space coordinates  are 

re la ted to the heat ing spot radius  R, the results  presented  here are  valid for any actual  size of the contact  region 

that satisfies the requi rement  of its smal lness  compared  to the body dimensions.  In par t icular ,  it was es tab l i shed  

that a contact  spot causes a temporary  localized increase in the surface tempera ture  within the l imits of p _< 2. The  

results  ob ta ined  in the present  work can be related to the problem of a moving body with a microproject ion on the 

surface when the dura t ion  of contact exceeds the character is t ic  t ime of the tempera ture  t rans i t ion  process.  
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Fig. 3. The dimensionless temperature T* at the separation line of boundary 

conditions (Z = 0; p = 1) vs the dimensionless number Bi at 1) Fo = 0.1, 2) 

1.1, 3) 10.1, 4) Fo = oo. 

A different picture is observed in Fig. 3, which presents the same results for the point p = 1 (the line of 

separation of boundary conditions). We can see a steep rise in the temperature profile in the steady state when Bi 

0. This implies that in the region with p ~ 1 convective heat tran';fer on the surface is an significant factor. 

Conclusions. It is found that the influence of a local spot of contact is localized within the limits of the 

region p _< 2, and that a substantial increase in temperature occurs only within the region of/9 < 1. The temperature 

field turned out to be highly localized with sharp gradients in both the axial and radial directions. 

It is shown that convective cooling of the surface influences both the level of the local increase in 

temperature and the extent of the heating region in the radial and axial directions. 

The characteristic durations of transition processes in heating that were recorded in the experiments of 

[2 ], which are on the order of 0 .1 -1  msec, agree with the theoretical estimates of the present work. 

N O T A T I O N  

T, tempera ture  of the half-space; R, radius of the surface microirregularity; p = r / R ,  Z = z / R ,  

dimensionless variables in a cylindrical coordinate system; Fo = k t / R  2, Fourier number; Bi = hR/2t,  Biot number; 

Po = 3 / 2 ( P / n R 2 ) ,  maximum Hertz pressure; P, load on contact; ;tt, thermal conductivity coefficient; h, heat transfer 

coefficient; k, thermal diffusivity coefficient; f, friction factor; V, sliding velocity; y, coefficient of separation of heat 

fluxes; Ln(x), Chebyshev-Laguer re  polynomials; Jr(x),  Bessel function; 6jo, the Kronecker delta. 
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